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An analytical  study was undertaken of the effect of a gas s t r eam on the wave flow cha rac t e r i s -  
t ics of thin layers  of a viscous liquid moving over a ver t ical  surface.  The resul ts  of the inves-  
tigations a re  compared  with experimental  data. 

Following [1, 2] on the wave flow of thin layers  of a viscous liquid over a ver t ical  surface,  a number 
of investigations appeared in the l i te ra ture  extending this topic and directed at the refinement of the equa- 
tions of flow of liquid films in a motionless gaseous medium under the action of gravitational forces  [3, 4], 
at the development of more  accura te  methods of solving these equations [3, 5], and at the determination of 
the stability of laminar  flow of a film [6]. In [7], the effect of the tangential s t r e s ses  c rea ted  at the in- 
te r face  on the wavelength is considered.  

In order  to investigate the effect of the gas flow on the wave charac te r i s t i c s  of thin layers  of a v i s -  
cous liquid moving over a ver t ical  surface,  we shall use the procedure  of [1] in general  form.  We orient 
the axis x along the wall in the direct ion of action of the force of gravi ty and the axis y f rom the wall in the 
direct ion of the liquid. We denote the variable thickness of the liquid layer  by a(x, t) and its average thick- 
ness  by a 0. Suppose that 

a=ao( l+q~) ,  qo=q~(x, t). (1) 

We shall assume the wavelength to be considerably grea te r  than the thickness of the liquid layer  (X >> a0), 
Calculations by the formulas  X = 27rn -1, Eqs.  (15) and (14) and by the graphs (Fig. 1) show that up to values 
of M < 100 the relation Aa~ 1 > 10 holds for almost  all g a s - l i q u i d  flows. 

The motion of a liquid film is descr ibed by the Nav ie r -S tokes  conditions which, for the condition 
>' a0 a re  converted to the form 

_ _  0 2 U x  Ou~ + u~ Oux Ou~ . 1 Op + g + v _ _ ,  (2) 
Ot ~ + uu Oy p Ox Oy ~ 

of continuity 

and mater ia l  balance of the liquid film 

Ou~ ~ Ou u - - 0  (3) 
Ox @ 

a 

Oua Oa 1 
Ox + - ~  = O, u = --a uxdy (4) 

0 

with the following boundary conditions 

p = - - a - - -  

u x = u u = O  for g = O ,  

02a 
]-Po, ~'~= • for g = a .  

Ox 2 

(5) 
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The la t t e r  condit ion a r i s e s  f r o m  [7] when X > a 0. In these  exp re s s ions  P0 is the p r e s s u r e  in the gas;  ~'~ 
and T a r e  the tangent ia l  s t r e s s e s  at the in te r face  r e spec t i ve ly  f r o m  the d i rec t ion  of the  liquid and g a s .  A c -  
cord ing  to [1], we take 

,~ 7 (aoan)2 (v k ~ . . . .  ) 92, ~--< 1. (6) 

A s s u m i n g  that  ~ is a funct ion of x -  kt, i . e . ,  that  the p rof i l e  of the su r f ace  of sepa ra t ion  is moving  
with cons tan t  ve loc i ty  k, we have 

k aa aa au~ - - k  au~ 
axm at ' at = Ox (7) 

F r o m  the f i r s t  equation of (7), (4), and (1), taking into accoun t  that Q = ua (the b a r  denotes  the a v e r a g e  with 
r e s p e c t  to x), it is  not diff icult  to  obtain 

Q = Uoao, u = u o (1 + ~0z)(1 + q~)-l. (8) 

Using Eqs .  (3) and (5) and the second  equation of (7), we r e p r e s e n t  Eq. (2) in the  f o r m  

(u~--k) Ou~ Ou~ ~ Ou~ ~ 03a O~u~ 
Ox Og J Ox dy . . . .  P Ox ~ t - g + v  ~Oy 2 (9) 

We subst i tu te  Eq, (9) by an equat ion in tegra ted  with r e s p e c t  to y.  We put 

u = 3 u ( x , t ) ( y  g~)  x a (  g y•) a 2a ~ ---4--~ 2 - - 3  a s , (10) 

which co inc ides  with the a c c u r a t e  solut ion fo r  l a m i n a r  flow of a l aye r  of l iquid with the boundary  condi t ions  
Ux = 0 when y = 0 and tt0Ux/0y = ~- when y = a .  E x p r e s s i o n  (10) can be wr i t t en  as  the f i r s t  s tep in the suc -  
c e s s i v e  use  of a d i r ec t  method  for  de te rmin ing  Ux f r o m  Eqs .  (2), (3), and the boundary  condi t ions  (5). 

Substi tut ing u x f r o m  Eq.  (10) in Eq.  (9) and in tegra t ing  with r e s p e c t  to y f r o m  0 to a, we obtain 

( ~a k)  O u _  a 0% ( 3~ 3u )  
0.9u 51 x Ox p Ox s~ + g + ~ . . . . . .  " (11) 2~a a s 

When ca lcu la t ing  the  coef f ic ien ts  of this  equation, the quant i ty  a, jus t  a s  in [1], was  a s s u m e d  to  be  cons tan t .  
We in t roduce  a f r o m  Eq. (1) and u f r o m  Eq. (8) into Eq. (11) and, l imi t ing to a f i r s t  approx imat ion ,  we 
find 

ad? + u o (z - -  1) z - -  0 .9+ 5~uo ] r 3 g --  z a--~o -~o (p + g -  3 a---(o 2pao / = 0. (12) 
P 

If ~0 = 0, then plane l a m i n a r  flow o c c u r s .  If we denote  the th ickness  of the l iquid f i lm in this  flow by m and 
take account  of Q f r o m  Eq.  (8), we f ind f r o m  Eq.  (12) 

g =- 3Q~m -3 - -  1.5~p-lm-L (13) 

Fo r  the ex is tence  of a s table  per iod ic  solut ion it is n e c e s s a r y  that  in Eq.  (12) the f r e e  t e r m  and the coe f -  
f ic ient  fo r  ~0 should be  equal to  ze ro .  Hence,  it fol lows that  Eq.  (13) should be sa t i s f ied  and, m o r e o v e r ,  

ga3ov-aQ-x = z - -  T. (14) 

In sa t i s fy ing  t he se  condi t ions ,  the per iod ic  s table  solut ion of Eq. (12) is d e t e r m i n e d  in the f o r m  

q0 = a sin [(x - -  kt) n], 

and the wave number  

n ~ = pa-aaol u~ (z ~ 1)(z - -  0.9 + 0.2T). (15) 

We denote  by/3 = a0 m - t  the r a t io  of the c o r r e s p o n d i n g  t h i c k n e s s e s  of l iquid l a y e r s  with ident ica l  flow 
r a t e s  Q; t h e n f r o m  Eqs .  (13) and (14) 

T = 6 ~ 3 ~  2z (16) 
31~ - - 2  
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Dependence of z, oe 2, fi, N, and T on M: 
2) ~2; 3) fi; 4) T; 5) N. 

Fig. 1. 1) z; 

We de te rmine  the d iss ipat ion of energy  through the t r a n s v e r s e  c r o s s  sect ion of the flow by an e lement  
of length dx [8]: 

0 

(10) in this equation, and averaging  the express ion  obtained over  the wavelength, Substituting u x f r o m  Eq. 
we f i n d -  taking account  of Eqs .  (8) and (1) - the a v e r a g e  energy diss ipat ion pe r  unit lengt.h 

F =  1 s 
- 2  [ 2 q _ a 2 [ l _ 6 z q _ z 2 ( 1  q7 2a2)]}(l_a2) = 9 .  

where ,  accord ing  to [1], 

(17) 

(18) 

If ~ = 0(F = 1) and T = 0(T = 0), the quantity - E #  f r o m  Eq. (17) becomes  equal to the energy  diss ipat ion of 
the liquid in the case  of plane l am i na r  flow. We denote by E = - [{E~a~u-tQ-2)/3] the re la t ive  energy  of d is -  
sipation; then accord ing  to Eq. (17) 

E = F @ 1/12T 2. (19) 

In the case  of in terac t ion  of the liquid with the gas s t r eam,  the energy  of diss ipat ion (17) is compen-  
sa ted by the work of the body fo r ce s  gpQ and the energy  impa r t ed  by the gas  s t r e a m  to the su r face  of the 
liquid Tk, i . e . ,  

3,uQ~ao -a (F + 1/1272) = gpQ + xk. (20) 

Solving jointly this equation and Eq.  (13), we find 

F = 8 3 -  1/12T (6~+ T - -  4z). (21) 

Equations (12)-07) and (19)-(21) in the case  when the voloci ty  of the gas  is  ze ro  0-= 0, T = 0) a r e  t r a n s -  
fo rmed  into the co r respond ing  equations obtained in [1]. 

El iminat ing the quantity n f r o m  Eq, (6) by subst i tut ion of i t s  value f r o m  Eq. (15) we find 

T = 5a~(z - -  l)(z--0.9) . N-~ 5~a~ . (22) 
N - -  a s ( z ,  1) ' ypp2a0 (v- -  k) ~ 

In o rder  to de te rmine  the wave p a r a m e t e r s ,  we shall  use  the reasoning  that as  a r e su l t  of wave flow 
the ampli tude of the wave will  be i n c r e a s e d  until the energy of diss ipat ion r eaches  the p e r m i s s i b l e  min imum 
value and the th ickness  of the liquid is  reduced to the value de te rmined  by Eq. (20). F r o m  the condition for  
s tabi l i ty  of the per iodic  solution, Eqs .  (13) and (14) a lso  should be  taken into account.  In our case ,  these  
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Fig. 2. Effect of gas flow rate  (v, cm/sec)  on the wave amplitude 
of the water film (A �9 103 cm), for Re = 100: points a re  experimen- 
tal data f rom [9]; the curve is calculated by formulas  (25), (28), 
and (27). 

Fig. 3. Dependence of the average  thickness of the water film ~0 
�9 103 cm) on ReynoldVs number for a gas with Re = 35: points are  
experimental  data f rom [10]; the curve is calculated by formulas  
(25), (26), and (28). 

considerat ions a re  effeeted in the following way. For  brevi ty  we shall denote the quantity T determined by 
Eq. (22) by T(a,  z, N) and determined by Eq. (16) by T(fl, z); the quantity F f rom Eq. (18) is denoted as 
F(a,  z) and from Eq. (21) as F(fl, z) by the substitution of T ~ ,  z). In addition, f rom Eq. (19) we denote 

E (6, z, N ) =  F (6, z )+  1 ~  T~ (6, Z ,  N), 

1 
E (~, z) - F (~, z )  + ~ T ~ (~, z). 

Then the conditions for determining the wave pa rame te r s  a re  written in the form 

T ([~, z ) =  T(a ,  z, N); g(a ,  z, N ) =  E([~, z); dE(g,  z, IV) = O. 
062 

As the values of T which occur  in the left and right hand sides of the second equation of this sys tem are  
equal, then this equation is simplified. Finally, we obtain 

T(~,  z ) = T ( a ,  z, N);  F(a,  z)=F([~, z);  0E(a, z, N) _ 0. (23) 
0 6 2  

In the case of a s tat ionary gas v - k = O, N = 0% and T(a,  z, N) = 0, we obtain f rom Eq. (23) the sys tem of 
equations 

OF (a, z) = 0, 
z = 3fi~, F (a, z) = I~; Oa ~ 

for which, in [1], were found 

a n=0.21; z=2 .4 ;  F = 0 , 8 ;  ~=0.93.  (24) 

Change of the wave flow pa rame te r s  should be found as a function of the quantity in which v and Q occur but 
in which a 0 is absent.  The required value can be obtained by substitution of z - T f rom Eq. (14) and N f rom 
Eq. (22) in the expression 

M 5n yp~v2/3Re4/3 (v - -  k) 2 (25) 
(z - -  T)W3N gl /3a 

The sys tem of equations (23) is solved on a computer .  The resul ts  of the calculation are  shown graph-  
ically in Fig. 1. When M = 0 (T = 0) the value of all quantities coincides with Eq. (24). 

F rom Eq. (14), and also taking into account that A = eva 0 and k = zu 0 = zv Rea~ "1, we obtain 

ao = g-1/3 v2/3 (z - -  T)l/3Rel/3; (26) 
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A = g-l /3 v~/3a (z - - T )  I/3 ReI/S; (27) 

k -= gi/3 vl/3 z (z - -  T) -I/3 Re 2/3. (28) 

The exper imenta l  va lues  of ampl i tude a r e  plot ted in Fig.  2 as a function of the a i r  flow rate ,  m e a s u r e d  over  
two sect ions along the tube height [9] with constant  wa te r  flow ra te  (Re = 100). The theore t ica l  cu rve  is 
ca lcula ted  in this sequence: v -  k given by Eq. (25), M calculated,  a, z, and T de te rmined  f r o m  Fig. 1, k 
b y E q .  (28), A b y E q .  (27), and t h e n v =  ( v - k )  + k .  

The exper imenta l  va lues  of wa te r  f i lm thickness  a r e  plotted in Fig. 3, m e a s u r e d  at  a constant  wa te r  
flow ra te  (Re = 35) and different  values  of Reynold ' s  number  for  a i r  (Reg = vdu~ l) for  a descending move -  
ment  of wa te r  and a i r  along a ve r t i ca l  tube with a d i ame te r  of 9.87 m m  [10]. The theore t ica l  cu rve  is ca l -  
culated by fo rmulas  (25), (26), (28), and Fig. 1. It was a s sumed  in the calculat ions that  7 = 1. 

a0 
u 

U0 
k 
z = kurd; 
V 

A and k 
= Aa~t; 

u and/~ 
p and P2 
Re = a0u0 u-1 = Qu -1 
T = ?a0ti-lQ-l; 
M and N 

N O T A T I O N  

is the ave r age  th ickness  of liquid layer ;  
is  the ave r age  veloci ty  in section; 
is the mean ra t e  of flow of liquid in center  section; 
is the phase  veloci ty  of motion of in te r face  profi le;  

is  the ave r age  flow ra te  of gas; 
a r e  the ampli tude and wavelength; 

a r e  the coeff icients  of k inemat ic  and dynamic v i scos i ty  of the liquid; 
a r e  the densi t ies  of liquid and gas; 
is the Reynold ' s  number  of the liquid film; 

a r e  given in the text  by Eq. (25) and (22). 
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