EFFECT OF A GAS STREAM ON THE WAVE FLOW
OF THIN LAYERS OF A VISCOUS LIQUID

Yu. P, Korotaev and A, A, Tochigin UDC 532,51

An analytical study was undertaken of the effect of a gas stream on the wave flow characteris-
tics of thin layers of a viscous liquid moving over a vertical surface. The results of the inves-
tigations are compared with experimental data.

Following [1, 2] on the wave flow of thin layers of a viscous liquid over a vertical surface, a number
of investigations appeared in the literature extending this topic and directed at the refinement of the equa-
tions of flow of liquid films in a motionless gaseous medium under the action of gravitational forces [3, 4],
at the development of more accurate methods of solving these equations [3, 5], and at the determination of
the stability of laminar flow of a film [6]. In [7], the effect of the tangential stresses created at the in-
terface on the wavelength is considered.

In order to investigate the effect of the gas flow on the wave characteristics of thin layers of a vis-
cous liquid moving over a vertical surface, we shall use the procedure of [1] in general form, We orient
the axis x along the wall in the direction of action of the force of gravity and the axis y from the wall in the
direction of the liquid, We denote the variable thickness of the liquid layer by a(x, t) and its average thick-
ness by a;. Suppose that

a=a,(l-+9¢), e=9¢ 9. (1)
We shall assume the wavelength to be considerably greater than the thickness of the liquid layer (A > ag).

Calculations by the formulas A = 2mn~!, Egs. (15) and (14) and by the graphs (Fig. 1) show that up to values
of M < 100 the relation Aay! > 10 holds for almost all gas—liquid flows.

The motion of a liquid film is described by the Navier--Stokes conditions which, for the condition
A > gy are converted to the form
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x u 2 == gt L 2)
o T Ty o o ETY g
of continuity
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and material balance of the liquid film
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with the following boundary conditions

U, =u,=0 for y=0,

’a (5)
p=—0 EEETPD' T,=41 for y=a.
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The latter condition arises from [7] when A > a). In these expressions py is the pressure in the gas; T,
and 7 are the tangential stresses at the interface respectively from the direction of the liquid and gas, Ac-
cording to [1], we take

T =1 {apan)* (v —k)?p,, v L 6)
. 1
Agsuming that ¢ is a function of x —kt, i.e., that the profile of the surface of separation is moving
with constant velocity k, we have

O _ % o _ o, ou
Ox o’ ot Ox (")

From the first equation of (7), (4), and (1), taking into account that Q = ua (the bar denotes the average with
respect to x), if is not difficult to obtain

Q =y, 4 =1ty(1+ @)1+ @) ®)
Using Egs. (3) and (5) and the second equation of (7), we represent Eq. (2) in the form
3 2
- Ou,  Ou, Ou,, dy = o @_g__l_ aux . ©)
ox Oy 0x o oy?
We substitute Eq, (9) by an equation integrated with respect to y. We put
y _ ¥ (Y s
=3k H{-~——]—— (2= —3-"),
s (0 ( a 2a2) 4p ( a @ ) 19)

which coincides with the accurate solution for laminar flow of a layer of liquid with the boundary conditions
ux = 0 when y = 0 and uaux/ay =T when y =a, Expression (10) can be written as the first step in the suc-
cessive use of a direct method for determining uy from Egs. (2), (3), and the boundary conditions (5).

Substituting u, from Eq. (10) in Eq, (9) and integrating with respect to y from 0 to @, we obtain
X .

. 3
(o.gu_lﬂ—k)—a‘i—i LA (..3‘ ——3—’”—). 1)
p 2pa a? .

When calculating the coefficients of this equation, the quantity a, just as in [1], was assumed to be constant,
We introduce ¢ from Eq. (1) and u from Eq, (8) into Eq, (11) and, limiting to a first approximation, we
find

uov

p 0

) =0. (12)

If ¢ =0, then plane laminar flow occurs. If we denote the thickness of the liquid film in this flbw by m and
take account of Q from Eq, (8), we find from Eq, (12)

g = 3Qvm=3 — 1.5vp im-L, (13)

2pa,

For the existence of a stable periodic solution it is necessary that in Eq. (12) the free term and the coef-
ficient for ¢ should be equal to zero. Hence, it follows that Eq, (13) should be satisfied and, moreover,

gaviiQt=z—T. (14)
In satisfying these conditions, the periodic stable solution of Eq. (12) is determined in the form
@ =asin [(x — k) n],
and the wave number
n? = pota;t ul (z— 1)(z — 0.9 +- 0,27). (15)
We denote by £ = aom'1 the ratio of the corresponding thicknesses of liquid layers with identical flow

rates Q; thenfrom Eqs. (13) and (14)

_ 6p* — 2z' (16)
3p—2
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Fig. 1. Dependence of z, &%, 8, N, and T on M: 1) z;
2) o 3)B; 4)T; 5) N,

We determine the dissipation of energy through the transverse cross section of the flow by an element
of length dx [8]:

ik Ou, \%
dEu=—pdxH & )dy.
0

Substituting uy from Eq, (10) in this equation, and averaging the expression obtained over the wavelength,
we find — taking account of Egs. (8) and (1) — the average energy dissipation per unit length

—E, = spQZao—s(F + .52_ Tz) , an

where, according to [1],
.5
F xé. (24 02 [1— b2+ 2(1 + 20)]J(1—a?) °. 1s)

¥ a=0(F=1)and T = 0(T =0), the quantity ~Ey from Eq, (17) becomes equal to the energy dissipation of
the liquid in the case of plane laminar flow. We denote by E = — [(E a3~ 'Q"%)/3] the relative energy of dis-
sipation; then according to Eq, (17) ’

E =F 4 /12T~ (19)
In the case of interaction of the liquid with the gas stream, the energy of dissipation (17) is compen-
sated by the work of the body forces goQ and the energy imparted by the gas stream to the surface of the
liguid 7k, i.e.,
3uQ%ay® (F + 171279 = goQ + k. (20)
Solving jointly this equation and Eq, (13), we find
F =P —1/12T (6p + T — 42). (21)

Equations (12)-(17) and (19)-(21) in the case when the volocity of the gas is zero (' =0, T = 0) are trans-
formed into the corresponding equations obtained in [1].

Eliminating the quantity n from Eq. (6) by substitution of its value from Eq. (15) we find

_ Sefz— D)z—10.9) N buon

T D N OMOT
N—a?z—1) Y002 (U — R

(22)

In order to determine the wave parameters, we shall use the reasoning that as a result of wave flow
the amplitude of the wave will be increased until the enexrgy of dissipation reaches the permissible minimum
value and the thickness of the liquid is reduced to the value determined by Eg, (20), From the condition for
stability of the periodic solution, Egs. (13) and (14) also should be taken into account, In our case, these
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Fig. 2. Effect of gas flow rate (¥, cm/sec) on the wave amplitude
of the water film (A +10% cm), for Re = 100: points are experimen~-
tal data from [9]; the curve is calculated by formulas (25), (28),
and (27),

Fig. 3. Dependence of the average thickness of the water film (@,
-10% cm) on Reynold's number for a gas with Re = 35: points are

experimental data from [10]; the curve is calculated by formulas
(25), (26), and (28).

considerations are effected in the following way. For brevity we shall denote the quantity T determined by
Eq. (22) by T(«, z, N} and determined by Eq. (16) by T {3, z); the quantity F from Eq. (18) is denoted as
¥ (@, z) and from Eq. (21) as F(@, z) by the substitution of T (8, z). In addition, from Eg, (19) we denote

E(u, z, N)=F(a, z)+—112_ T%(a, 2, N),

E@ 2=F 2+ 15 T*6, 2

Then the conditions for determining the wave parameters are written in the form

0E (¢, 2, N) _

T (ﬁr 2) =T (a, 2, N): E(Ct, z, N) =E(B: z); S

As the values of T which occur in the left and right hand sides of the second equation of this system are
equal, then this equation is simplified. Finally, we obtain
E(@ 2z, N) _,

da? @3)

TP 2=T(a, z N);. F(a, 2)=F(B, 2);
In the case of a stationary gas v—k =0, N =, and T(e, z, N) = 0, we obtain from Eq. (23) the system of
eqguations
OF (g, 2) —0
do?

»

z=23p% Fl(a, 2) =%

for which, in [1], were found ,
?=021; z=24; F=08 p=0.93 (24)

Change of the wave flow parameters should be found as a function of the quantity in which v and @ occur but
in which a, is absent. The required value can be obtained by substitution of z — T from Eq. (14) and N from
Eq. (22) in the expression

b _ ¥psv*PRe* (0 —k)® (25)
@—T"N g'%o ‘

The system of equations (23) is solved on a computer, The results of the calculation are shown graph~
ically in Fig, 1, When M = 0 (T = 0) the value of all quantities coincides with Eq. (24).

From Eq. (14), and also taking into account that A = agy and k = zu, = zV Reaj?, we obtain

a, = g PP (2 — T)PRe", (26)
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A =g ""vPae—T)"" R, (27)
k= g v’z (z— Ty~ R (28)

The experimental values of amplitude are plotted in Fig. 2 as a function of the air flow rate, measured over
two sections along the tube height [9] with constant water flow rate (Re = 100), The theoretical curve is
calculated in this sequence: v—k given by Eq. (25), M calculated, «, z, and T determined from Fig. 1, k
by Eq. (28), A by Eq. (27), and then v = (v— k) +k.

The experimental values of water film thickness are plotted in Fig. 3, measured at a constant water
flow rate (Re = 35) and different values of Reynold's number for air (Re, = vdv3l) for a descending move-
ment of water and air along a vertical tube with a diameter of 9,87 mm [10]. The theoretical curve is cal~
culated by formulas (25), (26), (28), and Fig. 1. It was assumed in the calculations that v =1,

NOTATION

ay is the average thickness of liquid layer;
u is the average velocity in section;
g is the mean rate of flow of liguid in center section;
k is the phase velocity of motion of interface profile;
z = kuyl;
v is the average flow rate of gas;
Aand A are the amplitude and wavelength;

a = Aapl;
v and U are the coefficients of kinematic and dynamic viscosity of the liquid;
p and p, are the densities of liquid and gas;
Re = quy~! = Qv! is the Reynold's number of the liquid film;
T = Taou’iQ'i;
M and N are given in the text by Eq. (25) and (22).
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